If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-14y-12=0
a = 10; b = -14; c = -12;
Δ = b2-4ac
Δ = -142-4·10·(-12)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-26}{2*10}=\frac{-12}{20} =-3/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+26}{2*10}=\frac{40}{20} =2 $
| (3x+2)/(5x)+(2x-1)/(2x)=4 | | 34/12=6/7-5x/7 | | 31/10-2x=7x-(x+9/10+3x)+x | | -30=5(x-9)= | | 5x+x+23=180 | | 3(2x-3)=4(3x-8)-1 | | Y=6x+62 | | 7x^2-38x=0 | | 2/3n+8=18 | | 5y+6y-81=7y+65y | | 2x+3=x=5 | | 7x=2x÷30 | | 11b=2b | | 4a/2a=54-a | | -7(-2k+6)=-14+6k | | 12-4x+2x+1=-(4-10x)+12-4x | | z/15=2/3 | | (10x-3)÷10-(3x+3)=1÷10 | | 10-7a=-3 | | 5x-12+3x=180 | | 12y-3-(5-12y)=-(5-12y)-(8-8y) | | 12y-3-(5-12y)+3=4y-(5-12y)-(8-8y) | | 4x÷1=3x-1 | | 29+(x+5)=90 | | 3/5x19=0.6 | | 31x+17=8 | | X3+2x-1=0 | | 5x-3=-3(-x-1) | | 3x+25=7X-35 | | x-17/4=4 | | 7^x+7^x+1=56 | | 9y-12-2y=2 |